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•	 dla mechanizmu przechyłowego – temperatura kry-

tyczna na poziomie 
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 for the beam mechanism – a critical temperature of C763o, cra , 

 for the tilting mechanism – a critical temperature of C674o, cra , 

 for the combined mechanism – a critical temperature of C705o, cra , 
Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
Accordingly, the result (see Figure 4) 

 for the beam mechanism is:  
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8. Concluding remarks 

 

 The above-discussed linear-programming based algorithm for the estimation of the 
steel-frame critical temperature combines the classical static and kinematic approaches of the 
plastic limit load theory. On the one hand, the kinematic-approach related analysis of 
individual kinematically admissible movement mechanisms in and of itself leads to estimates 
of this load usually located on the dangerous side in relation to its actual value (in other 
words, it leads to overestimates). This means that the critical temperature of the load bearing 
structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
considered as the upper limit estimate of the value sought. For the proposed algorithm, 
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.
Powyższe wyniki pozwalają na wybór mechanizmu prze-

chyłowego jako tego, który jest miarodajny dla rozpatrywanej 
ramy, a uzyskana dla niego wartość temperatury może być in-
terpretowana jako poszukiwana temperatura krytyczna.

Oczywiście analogiczny wynik co do wyboru mechani-
zmu krytycznego można otrzymać znacznie szybciej, stosując 
klasyczne podejście kinematyczne. Należy jednak zauważyć, 
że uzyskane tą drogą oszacowania temperatury krytycznej 
będą ilościowo różne. Dostajemy bowiem (patrz ryc. 4):
•	 dla mechanizmu belkowego:
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critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
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the considered frame and the temperature value established for it can be interpreted as the 
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8. Uwagi końcowe
Przedstawiony powyżej algorytm szacowania temperatu-

ry krytycznej ramy stalowej oparty na technice programowania 
liniowego łączy w sobie klasyczne podejścia statyczne i kinema-
tyczne teorii nośności granicznej. Z jednej strony związana z po-
dejściem kinematycznym analiza poszczególnych kinematycznie 
dopuszczalnych mechanizmów ruchu sama w sobie prowadzi do 
oszacowań tej nośności na ogół lokowanych po stronie niebez-
piecznej względem jej wartości rzeczywistej (czyli inaczej mówiąc 
zawyżonych). Oznacza to, że wyznaczona na podstawie tego typu 
procedury temperatura krytyczna ustroju nośnego, odpowiada-
jąca takiej zawyżonej nośności, będzie wartością zaniżoną, któ-
rą trzeba traktować jedynie jako dolną akceptowalną granicę jej 
przybliżenia. Z drugiej strony bazujące na podejściu statycznym 
obliczenia uwzględniające rezerwę nośności ustroju wynikającą 
z redystrybucji momentów zginających dają w stosunku do sza-
cowanej nośności granicznej rozwiązania co prawda interpreto-
wane jako te, które są zawsze bezpieczne, ale za to często ilościo-
wo niedoszacowane. A zatem, wyliczona na ich podstawie tem-
peratura krytyczna badanej ramy powinna zostać potraktowana 
raczej jako graniczne górne oszacowanie poszukiwanej warto-
ści. W prezentowanym algorytmie ograniczenia specyfikuje się 
z wykorzystaniem twierdzeń klasycznego podejścia statycznego. 
Z tego podejścia wynika również sama zasada maksymalizacji 
mnożnika ζ . Wyboru temperatury miarodajnej dokonuje się 
jednak dopiero po porównaniu wszystkich rozwiązań, z których 
każde dotyczy innego, kinematycznie możliwego mechanizmu 
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the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
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Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
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structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
considered as the upper limit estimate of the value sought. For the proposed algorithm, 
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A corresponding result with regard to the choice of the 
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classical kinematic approach. It is important to note, howe-
ver, that the critical-temperature estimates so obtained will be 
qualitatively different. Accordingly, the result (see Figure 4)
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 for the beam mechanism – a critical temperature of C763o, cra , 
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 for the combined mechanism – a critical temperature of C705o, cra , 
Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
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words, it leads to overestimates). This means that the critical temperature of the load bearing 
structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
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 for the beam mechanism – a critical temperature of C763o, cra , 

 for the tilting mechanism – a critical temperature of C674o, cra , 

 for the combined mechanism – a critical temperature of C705o, cra , 
Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
Accordingly, the result (see Figure 4) 
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plastic limit load theory. On the one hand, the kinematic-approach related analysis of 
individual kinematically admissible movement mechanisms in and of itself leads to estimates 
of this load usually located on the dangerous side in relation to its actual value (in other 
words, it leads to overestimates). This means that the critical temperature of the load bearing 
structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
considered as the upper limit estimate of the value sought. For the proposed algorithm, 
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 for the beam mechanism – a critical temperature of C763o, cra , 

 for the tilting mechanism – a critical temperature of C674o, cra , 

 for the combined mechanism – a critical temperature of C705o, cra , 
Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
Accordingly, the result (see Figure 4) 
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arrived at much faster by using the classical kinematic approach. It is important to note, 
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the considered frame and the temperature value established for it can be interpreted as the 
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the considered frame and the temperature value established for it can be interpreted as the 
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Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
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Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
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the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
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the considered frame and the temperature value established for it can be interpreted as the 
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structure defined through this procedure, corresponding to such an overestimated load, will be 
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approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
considered as the upper limit estimate of the value sought. For the proposed algorithm, 

RESEARCH AND DEVELOPMENT  BiTP Vol. 44 Issue 4, 2016, pp. XX-XX 
ИССЛЕДОВАНИЯ И РАЗВИТИЕ   DOI: 10.12845/bitp.44.4.2016.x 
 
 

 for the beam mechanism – a critical temperature of C763o, cra , 

 for the tilting mechanism – a critical temperature of C674o, cra , 

 for the combined mechanism – a critical temperature of C705o, cra , 
Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
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words, it leads to overestimates). This means that the critical temperature of the load bearing 
structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
of the analysed frame established on the basis of such computations should instead be 
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Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
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words, it leads to overestimates). This means that the critical temperature of the load bearing 
structure defined through this procedure, corresponding to such an overestimated load, will be 
an underestimated value, which should be considered as the lower acceptable limit of its 
approximation. On the other hand, the static-approach based computations that factor in the 
reserve of load bearing capacity of the structure resulting from bending-moment redistribution 
provide solutions for the limit load to be estimated which, while interpreted as the ones that 
are always safe, are often quantitatively underestimated. By extension, the critical temperature 
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Based on these results, the tilting mechanism can be chosen as being representative of 

the considered frame and the temperature value established for it can be interpreted as the 
critical temperature sought. 
 A corresponding result with regard to the choice of the critical mechanism can be 
arrived at much faster by using the classical kinematic approach. It is important to note, 
however, that the critical-temperature estimates so obtained will be qualitatively different. 
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ruchu. Wybór temperatury minimalnej spośród wszystkich war-
tości zgromadzonych w pierwszym etapie obliczeń stanowi for-
malne wykorzystanie twierdzeń podejścia kinematycznego.

Należy zauważyć, że obydwa podejścia przytoczone  
w przykładzie obliczeniowym wskazały jako miarodajny taki 
sam, czyli przechyłowy, mechanizm plastycznego zniszczenia 
ramy. Z zastosowania formalizmu programowania liniowego 
wynika jednak temperatura krytyczna oszacowana na pozio-
mie Θa,cr = 674⁰C, z podejścia czysto kinematycznego natomiast 
temperatura znacznie niższa, czyli Θa,cr = 571⁰C. W świetle uwag 
przytoczonych powyżej pierwsze z tych oszacowań jest zdaniem 
autorów bardziej wiarygodne, drugie natomiast powinno zostać 
opatrzone ilościowym kwantyfikatorem „co najmniej”.

Rekomendowana w tym artykule procedura obliczeniowa 
jest jakościowo różna od analogicznej procedury bazującej 
na formalizmie programowania liniowego i zaproponowanej 
przez Králika i Vargę [12]. W pracy tych autorów w celu osza-
cowania odporności ogniowej ramy stalowej rozwiązuje się 
bowiem osobno zadania specyfikowane dla podejścia statycz-
nego i kinematycznego, a następnie określa przedział warto-
ści, wewnątrz którego spodziewana jest lokalizacja faktycznej 
odporności rozpatrywanego ustroju. W algorytmie zapropo-
nowanym w niniejszym artykule, prowadzącym do oszaco-
wania dla badanej ramy jednoznacznie do niej odniesionej 
temperatury krytycznej, oba podejścia zostały włączone do 
jednej wspólnej procedury, co czyni ją w rozumieniu autorów 
łatwiejszą w zastosowaniu i czytelniejszą w interpretacji. 
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